Accurate pain assessment is essential for effective management; however, most studies have focused on differentiating pain from non-pain or estimating pain intensity rather than distinguishing between distinct pain types. We present a machine learning method for classifying physical and social pain using physiological signals. Seventy-three healthy adults participated in experiments involving baseline, neutral, and pain-inducing stimuli related to both types of pain. Physical pain was elicited by pressure cuff inflation, whereas social pain was induced by watching a video depicting a loved one’s death. The electrocardiogram, electrodermal activity, photoplethysmogram, respiration, and finger temperature were recorded, and 12 physiological features were extracted. Three machine learning algorithms—logistic regression, support vector machine, and random forest—were employed to classify the input data into baseline versus painful states and physical versus social pain. Our findings demonstrated high accuracy in identifying social pain (0.82) and physical pain (0.90) compared to the baseline. Classification accuracy between physical and social pain was moderate (0.63) when using painful state data alone but improved to 0.77 when incorporating reactivity from neutral to painful states. This study highlights the potential of multimodal physiological signals for differentiating pain types and enhancing personalized pain management strategies.
KSP Keywords
Electrodermal Activity, High accuracy, Machine Learning Algorithms, Machine Learning Methods, Management strategy, Pain Intensity, Pain management, Physical pain, Physiological features, Social pain, Support VectorMachine(SVM)
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.