This study proposes Dual-Stream Former, a novel architecture that integrates a Video Swin Transformer and Conformer designed to address the challenges of visual speech recognition (VSR). The model captures spatiotemporal dependencies, achieving a state-of-the-art character error rate (CER) of 3.46%, surpassing traditional convolutional neural network (CNN)-based models, such as 3D-CNN + DenseNet-121 (CER: 5.31%), and transformer-based alternatives, such as vision transformers (CER: 4.05%). The Video Swin Transformer captures multiscale spatial representations with high computational efficiency, whereas the Conformer back-end enhances temporal modeling across diverse phoneme categories. Evaluation of a high-resolution dataset comprising 740,000 utterances across 185 classes highlighted the effectiveness of the model in addressing visually confusing phonemes, such as diphthongs (/ai/, /au/) and labio-dental sounds (/f/, /v/). Dual-Stream Former achieved phoneme recognition error rates of 10.39% for diphthongs and 9.25% for labiodental sounds, surpassing those of CNN-based architectures by more than 6%. Although the model’s large parameter count (168.6 M) poses resource challenges, its hierarchical design ensures scalability. Future work will explore lightweight adaptations and multimodal extensions to increase deployment feasibility. These findings underscore the transformative potential of Dual-Stream Former for advancing VSR applications such as silent communication and assistive technologies by achieving unparalleled precision and robustness in diverse settings.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.