Taeyeon Oh, Minwoo Song, Hyunkeun Lee, Hansu Kim, Hyeongbeom Lee, Yong-Ryun Jo, Tae-Wook Kim, Gui Won Hwang, Jinhyung Kim, Jihun Son, Chanhyeok Park, Hanbit Jin, Chan-Hwa Hong, Inho Lee, Jun-Gyu Choi, Ji Hwan Kim, Alexander Tipan-Quishpe, Myung-Han Yoon, Hye Jin Kim, Changhyun Pang, Sungjun Park
Issue Date
2025-09
Citation
Materials Science and Engineering R: Reports, v.166, pp.1-11
Continuous physiological signal monitoring and diagnosis are crucial for proactive health management and timely interventions. Key challenges include achieving non-toxic adhesion of stretchable conductors to dynamic skin and integration with lightweight, wearable circuits equipped diagnosing algorithms. We propose wireless physiological monitoring with vital diagnosis, featuring octopus-inspired micromembrane structure electrodes that enhance both adhesion and permeability. These stretchable electrodes exhibit a conductivity of over 2700 S/cm and maintain stretchability up to 1000 %, with minimal degradation after 1000 cycles of deformation. Adhesion reaches 12 kPa, ensuring durability for over 1000 attachment-detachment cycles and long-term attachment exceeding 24 h without skin toxicity. The system, connected to a miniaturized wireless circuit (2.8 g), facilitates real-time, accurate collection of electrocardiography (ECG), electromyography (EMG), electrooculography (EOG), and electroencephalography (EEG) signals. As proof of concept, ECG signals from real subjects processed with a transfer-learning algorithm achieved over 93.3 % diagnostic accuracy, paving the way for reliable, personalized health monitoring.
KSP Keywords
Diagnostic accuracy, ECG signals, Electromyography (emg), Health management, Health monitoring, Monitoring and diagnosis, Physiological signal monitoring, Real-time, Skin toxicity, Stretchable conductors, Wireless circuit
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.