When using lazy learners based on the Mahalanobis distance (MD) function for process fault detection (FD), due to the curse of dimensionality, type I errors can increase significantly as the number of process variables increases. In high-dimensional data spaces, certain regions exist in which data samples are sparsely distributed. From the perspective of dense regions, the outlierness (i.e., degree of being statistical outliers) of samples in sparse regions increases as the data dimensions increase, leading to unstable estimations of classical covariance matrices for calculating MD function values. To solve this problem, a lazy learning method is proposed based on a robust MD function, where robust covariance matrices are estimated using a minimum covariance determinant method. Here, k-nearest neighbors and local outlier factor are employed as baseline learners. The proposed method can be applied to all types of lazy learning techniques. To verify FD performance, the proposed method is applied to two benchmark processes. The experimental results show that the proposed method can perform FD on very high-dimensional processes successfully without rapid increases in type I errors.
KSP Keywords
Covariance matrix, Data dimensions, Data samples, Distance-based, High-dimensional data, K-Nearest Neighbor(KNN), Lazy learners, Learning methods, Local outlier factor(LOF), Minimum covariance determinant, Process variables
This work is distributed under the term of Korea Open Government License (KOGL)
(Type 4: : Type 1 + Commercial Use Prohibition+Change Prohibition)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.