Federated Learning (FL) has revolutionized Artificial Intelligence (AI) by enabling decentralized model training across diverse datasets, thereby addressing privacy concerns. However, traditional FL relies on a centralized server, leading to latency, single-point failures, and trust issues. Decentralized Federated Learning (DFL) emerges as a promising solution, but it faces challenges in achieving optimal accuracy and convergence due to limited client interactions, requiring energy inefficiency. Moreover, balancing the personalization and generalization of the AI model in DFL remains a complex issue. To address those challenging problems, this paper presents Def-Ag, an innovative energy-efficient DFL framework utilizing aggregator clients within similarity-based clusters. To reduce this signaling overhead, a partial model information exchange is proposed in intra-cluster training. In addition, the knowledge distillation method is applied for inter-cluster training to carefully incorporate the knowledge between clusters. Finally, by integrating clustering-based hierarchical DFL and optimizing client selection, Def-Ag reduces energy consumption and communication overhead while balancing personalization and generalization. Extensive experiments on CIFAR-10 and FMNIST datasets confirm Def-Ag's superior performance in reducing energy usage and maintaining learning accuracy compared to baseline methods. The results demonstrate that Def-Ag effectively balances personalization and generalization, providing a robust solution for energy-efficient decentralized federated learning systems.
KSP Keywords
CIFAR-10, Communication overhead, Decentralized model, Energy inefficiency, Energy usage, Federated learning, Information exchange, Inter-cluster, Intra-cluster, Knowledge Distillation, Learning framework
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.