The development of smart cities depends on intelligent systems that integrate data from diverse environments. In this work, we present ELiOT, an end-to-end LiDAR odometry framework with transformer architecture designed to utilize real-world data, simulations, and digital twins. ELiOT leverages high-fidelity simulators and digital twin environments to enable sim-to-real applications, training on the real-world KITTI odometry dataset while benefiting from simulated data for improved generalization. Our self-attention-based flow embedding network eliminates the need for traditional 3D-2D projections by implicitly modeling motion from sequential LiDAR scans. The framework incorporates a 3D transformer encoder-decoder to extract rich geometric and semantic features. By integrating digital twin environments and simulated data into the training process, ELiOT bridges the gap between simulation and real-world applications, offering robust and scalable solutions for urban navigation challenges. This work underscores the potential of combining real-world and virtual data to advance LiDAR odometry and highlights its role for the future smart cities.
KSP Keywords
Digital Twin, Encoder and Decoder, End to End(E2E), High fidelity, Real-world applications, Real-world data, Simulated data, Smart city, Urban navigation, Virtual Data, intelligent systems
This work is distributed under the term of Korea Open Government License (KOGL)
(Type 4: : Type 1 + Commercial Use Prohibition+Change Prohibition)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.