This paper addresses the challenge of multiple users concurrently sharing a single channel in a wireless network, a problem typically managed by Carrier Sense Multiple Access (CSMA) protocols. Traditional CSMA methods, however, often lack robustness to environmental changes due to their reliance on static parameters. To overcome this limitation, we propose the Dynamic-Persistent Carrier Sense Multiple Access (DP-CSMA) method, a dynamic and flexible solution inspired by both non-persistent and p-persistent CSMA protocols. Our method incorporates a deep reinforcement learning (DRL) model that dynamically adjusts the waiting period based on the current state and the decision-making process when the channel is sensed idle. This strategy transcends the limitations of static hyperparameters, such as the probability factor in p-persistent CSMA or the contention window in CSMA/CA, which demand careful tuning relative to the number of users. The DRL model in our system captures the dynamic history of previous states and actions using a Long Short-Term Memory (LSTM) model. It efficiently compresses repetitively taken actions into a skill, thereby ensuring a sufficient amount of information is encoded in the action history. Furthermore, our method generates skill-based policies that can induce variable lengths of waiting time for the agents, efficiently handling action sequences of varying lengths and to optimize channel access. We compare the performance of our method with conventional techniques in terms of throughput and evaluate the effectiveness of each method in utilizing the shared medium.
KSP Keywords
Channel Access(CA), Contention window, Current state, Decision-Making process, Deep reinforcement learning, Environmental changes, Learning approach, Number of users, P-persistent, Reinforcement learning(RL), Single Channel
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.