Parkinson's disease (PD), one of the most common neurodegenerative diseases, is involved in motor abnormality, primarily arising from the degeneration of dopaminergic neurons. Previous studies have examined the electrotherapeutic effects of PD using various methodological contexts, including live conditions, wireless control, diagnostic/therapeutic aspects, removable interfaces, or biocompatible materials, each of which is separately utilized for testing the diagnosis or alleviation of various brain diseases. Here, a cortical surface implant designed to improve motor function in freely moving PD animals is presented. This implant, a minimally invasive system equipped with a graphene electrode array, is the first integrated system to exhibit biocompatibility, wearability, removability, target specificity, and wireless control. The implant positioned at the motor cortical surface activates the motor cortex to maximize therapeutic effects and minimize off-target effects while monitoring motor activities. In PD animals, cortical motor surface stimulation restores motor function and brain waves, which corresponds to potentiated synaptic responses. Furthermore, these changes are associated with the upregulation of metabotropic glutamate receptor 5 (mGluR5, Grm5) and D5 dopamine receptor (D5R, Drd5) genes in the glutamatergic synapse. The newly designed wireless neural implant demonstrates capabilities in both real-time diagnostics and targeted therapeutics, suggesting its potential as a wireless system for biomedical devices for patients with PD and other neurodegenerative diseases.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.