Modern server processors in data centers equipped with high-performance networking technologies (e.g., 100 Gigabit Ethernet) commonly support parallel packet processing via multi-queue NICs, enabling multiple cores to efficiently handle massive traffic loads. However, existing architectural simulators such as gem5 lack support for these techniques and suffer from limited bandwidth due to outdated networking models. Although a recent study introduced a simulation framework supporting userspace high-performance networking via the Data Plane Development Kit (DPDK), many applications still rely on kernel-based networking. To address these limitations, we present pNet-gem5, a full-system simulation framework designed to model server systems under high-performance network workloads, targeting data center architecture research. pNet-gem5 extends gem5 by supporting parallel packet processing on multi-core systems through the integration of multiple hardware queues and a more advanced interrupt mechanism—Message Signaled Interrupts (MSI)—which allows each NIC queue to be mapped to a dedicated core with its own IRQ. It also provides a high-performance network interface and device driver that support scalable and configurable packet distribution between hardware and software. Moreover, by decoupling packet distribution and scheduling from NIC core logic, pNet-gem5 enables flexible experimentation with custom policies. As a result, pNet-gem5 enables more realistic simulation of modern server environments by modeling multi-queue NICs and supporting bandwidths up to 46 Gbps—a significant improvement over the previous limit of only a few Gbps and more closely aligned with today’s tens-of-Gbps networks.
KSP Keywords
Data Center Architecture, Data Plane Development Kit, Device driver, Hardware and software, High-performance networking, Multi-core system, Network Packet Processing, Network interfaces, Parallel Network, Realistic simulation, Simulation framework
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.