In Level 3 autonomous driving, drivers must quickly regain manual control when the vehicle exceeds its operational limits. Assessing driver readiness in real-time is crucial, especially under cognitive distraction, as delayed reactions can compromise safety. However, most vehicle systems rely on simple behavioral indicators, such as head movements from visual distractions, and struggle to predict driver readiness under complex cognitive distractions. Moreover, existing studies on cognitive distraction are primarily limited to laboratory settings or surveys, which limits their applicability to real-world driving conditions that require real-time decision making. To address these limitations, this study proposes an in-vehicle decision support system that analyzes cognitive distraction before take-over and predicts driver readiness in real-time. Phase 1 involved experiments with varying levels of cognitive distraction to collect data on driver behavior as well as psychological and physiological states to examine their relationship with driver readiness. Phase 2 used these findings to evaluate and compare deep learning models for predicting driver readiness. The results indicate that driver readiness can be predicted using eye-tracking data, with a model combining a transformer with a Random Forest Regressor achieving the best performance. This study enhances the understanding of the relationship between cognitive distraction and driver readiness. It applies these insights to an in-vehicle decision support system, improving the safety and reliability of autonomous vehicles. Furthermore, it provides a crucial foundation for advancing autonomous system design and driver monitoring technologies.
KSP Keywords
Autonomous System, Autonomous vehicle, Best performance, Driver Behavior, Driver monitoring, Driving conditions, In-vehicle, Model combining, Real-World driving, Safety and reliability, Take-over
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.