Precise control over the subthreshold swing (SS) of oxide thin-film transistors (TFTs) is critical for advanced display and low-power electronic systems. Here, we present a swing-tunable TFT (ST-TFT) using electrohydrodynamic (EHD) jet printed parasitic conduction path (PPCP) on an indium gallium zinc oxide (IGZO) channel. By tuning PPCP width and processing conditions, SS is reproducibly modulated from 0.36 to 1.58 V/dec without degrading mobility or operational stability. Structural and chemical analyses reveal that indium diffusion induces partial crystallization and oxygen vacancy formation in the IGZO back-channel, enabling stable hump conduction. Optimized ST-TFTs widen the OLED grayscale control range from 0.6 to 2.6 V and boost peak luminance from 1944 to 2758 cd/m2. SmartSpice simulations confirm reduced panel-level luminance nonuniformity under IR drop from 43.75 to 15.63%, without compensation circuitry. The PPCP-enabled stable intermediate conduction states provide a platform for multilevel logic and neuromorphic oxide electronics, highlighting ST-TFTs as a scalable solution for emerging electronics.
KSP Keywords
Chemical analyses, Compensation circuitry, Conduction path, Control range, IR Drop, Indium Gallium Zinc Oxide(IGZO), Indium diffusion, Oxide electronics, Partial crystallization, Precise control, Processing conditions
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.