We investigated the characteristics of blue and white inverted organic light-emitting diodes (IOLEDs) varying indium tin oxide (ITO) thicknesses. We measured the optical transmittance, reflectance, sheet resistance, and surface roughness of ITO films with different thicknesses and performed optical simulations to calculate external quantum efficiencies (EQEs) for the devices. The simulation results indicate that the effect of ITO thickness on device efficiency decreases as the number of emission colors increases. We fabricated blue, 2- and 3-wavelength white IOLEDs. The blue IOLEDs with 70 nm ITO showed a 13% higher EQE compared to that of the device with 150 nm ITO. However, the devices with 70 nm ITO exhibited 6% and 1% higher EQEs compared to those of the device with 150 nm ITO in the 2- and 3-wavelength white IOLEDs, respectively, suggesting that the effect of ITO thickness on the EQE of white IOLEDs is weaker than in single-color IOLEDs.
KSP Keywords
Device efficiency, Different thicknesses, ITO films, Indium Tin Oxide(ITO), Inverted organic light-emitting diodes, Optical simulation, Single-color, Surface roughness, light emitting diodes(LED), optical transmittance, organic light emitting diode(OLED)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.