This paper introduces a novel resilient algorithm designed for distributed unmanned aerial vehicles (UAVs) in dynamic and unreliable network environments. Initially, the UAVs should be trained via multi-agent reinforcement learning (MARL) for autonomous mission-critical operations and are fundamentally grounded by centralized training and decentralized execution (CTDE) using a centralized MARL server. In this situation, it is crucial to consider the case where several UAVs cannot receive CTDE-based MARL learning parameters for resilient operations in unreliable network conditions. To tackle this issue, a communication graph is used where its edges are established when two UAVs/nodes are communicable. Then, the edge-connected UAVs can share their training data if one of the UAVs cannot be connected to the CTDE-based MARL server under unreliable network conditions. Additionally, the edge cost considers power efficiency. Based on this given communication graph, message-passing is used for electing the UAVs that can provide their MARL learning parameters to their edge-connected peers. Lastly, performance evaluations demonstrate the superiority of our proposed algorithm in terms of power efficiency and resilient UAV task management, outperforming existing benchmark algorithms.
Keyword
Multi-Agent System (MAS), Reinforcement Learning (RL), Communication Graph, Message Passing, Resilient Communication Network, Unmanned Aerial Vehicle (UAV), UAVs Networks
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.