The rapid proliferation of connected vehicles equipped with both Vehicle-to-Vehicle (V2V) sidelink and cellular interfaces creates new opportunities for real-time vehicular applications, yet achieving ultra-reliable communication without prohibitive cellular costs remains challenging. This paper addresses reliable inter-vehicle video streaming for safety-critical applications such as See-Through for Passing and Obstructed View Assist, which require stringent Service Level Objectives (SLOs) of 50 ms latency with 99% reliability. Through measurements in Seoul urban environments, we characterize the complementary nature of V2V and Vehicle-to-Network-to-Vehicle (V2N2V) paths: V2V provides ultra-low latency (mean 2.99 ms) but imperfect reliability (95.77%), while V2N2V achieves perfect reliability but exhibits high latency variability (π99
: 120.33 ms in centralized routing) that violates target SLOs. We propose a hybrid framework that exploits V2V as the primary path while selectively retransmitting only lost packets via V2N2V. The key innovation is a dual loss detection mechanism combining gap-based and timeout-based triggers leveraging Real-Time Protocol (RTP) headers for both immediate response and comprehensive coverage. Trace-driven simulation demonstrates that the proposed framework achieves a 99.96% packet reception rate and 99.71% frame playback ratio, approaching lossless transmission while maintaining cellular utilization at only 5.54%, which is merely 0.84 percentage points above the V2V loss rate. This represents a 7Γ
cost reduction versus PLR Switching (4.2 GB vs. 28 GB monthly) while reducing video stalls by 10Γ
. These results demonstrate that packet-level selective redundancy enables cost-effective ultra-reliable V2X communication at scale.
High latency, Hybrid Framework, Immediate response, Loss detection, Packet Reception Rate(PRR), Percentage points, Real-time, Trace-driven Simulation, Ultra-Reliable Communication, Ultra-low latency, V2V communication
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, βthe Fourth Industrial Revolution and ICT β IDX Strategy for leading the Fourth Industrial Revolutionβ, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
β» ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.