International Speech Communication Association (INTERSPEECH) 2010, pp.725-728
Publisher
ISCA
Language
English
Type
Conference Paper
Abstract
In this paper, we propose a computational auditory scene analysis (CASA)-based front-end for two-microphone speech recognition in a car environment. One of the important issues associated with CASA is the accurate estimation of mask information for target speech separation within multiple microphone noisy speech. For such a task, the time-frequency mask information is compensated through the signal-to-noise ratio resulted from a beamformer to adjust the noise quantity included in noisy speech. We evaluate the performance of an automatic speech recognition (ASR) system employing a CASA-based front-end with the proposed mask compensation method. In addition, we compare its performance with those employing a CASA-based front-end without mask compensation and the beamforming-based front-end. As a result, the CASA-based front-end achieves an average word error rate (WER) reduction of 8.57% when the proposed mask compensation method is applied. In addition, the CASA-based front-end with the proposed method provides a relative WER reduction of 26.52%, compared with the beamforming-based front-end.
KSP Keywords
Compensation method, Computational auditory scene analysis, Front-End, Signal noise ratio(SNR), Signal-to-Noise, Speech Separation, accurate estimation, automatic speech recognition(ASR), noisy speech, time frequency(T-F), time-frequency mask
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.