This paper makes a close inquiry into ill-conditioning that may be occurred in wireless localization of the sensor nodes based on network signals in the wireless sensor network and provides the clue for solving the problem. In order to estimate the location of a node based on the range information calculated using the signal propagation time, LS (Least Squares) method is usually used. The LS method estimates the solution that makes the squared estimation error minimal. When a nonlinear function is used for the wireless localization, ILS (Iterative Least Squares) method is used. The ILS method process the LS method iteratively after linearizing the nonlinear function at the initial nominal point. This method, however, has a problem that the final solution may converge into a LM (Local Minimum) instead of a GM (Global Minimum) according to the deployment of the fixed nodes and the initial nominal point. The conditions that cause the problem are explained and an adaptive method is presented to solve it, in this paper. It can be expected that the stable location solution can be provided in implementation of the wireless localization methods based on the results of this paper.
KSP Keywords
Estimation error, Ill-conditioning, LS method, Least Square(LS), Local minimum, Node based, Propagation time, Sensor node, Signal Propagation, Wireless Localization, Wireless Sensor networks
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.