Joint Spatial Division and Multiplexing (JSDM) is a downlink multiuser MIMO scheme recently proposed by the authors in order to enable 'massive MIMO' gains and simplified system operations for Frequency Division Duplexing (FDD) systems. The key idea lies in partitioning the users into groups with approximately similar channel covariance eigenvectors and serving these groups by using two-stage downlink precoding scheme obtained as the concatenation of a pre-beamforming matrix, that depends only on the channel second-order statistics, with a multiuser MIMO linear precoding matrix, which is a function of the effective channels including pre-beamforming. The role of pre-beamforming is to reduce the dimensionality of the effective channel by exploiting the near-orthogonality of the eigenspaces of the channel covariances of the different user groups. This paper is an extension of our initial work on JSDM, and addresses some important practical issues. First, we focus on the regime of finite number of antennas and large number of users and show that JSDM with simple opportunistic user selection is able to achieve the same scaling law of the system capacity with full channel state information. Next, we consider the large-system regime (both antennas and users growing large) and propose a simple scheme for user grouping in a realistic setting where users have different angles of arrival and angular spreads. Finally, we propose a low-overhead probabilistic scheduling algorithm that selects the users at random with probabilities derived from large-system random matrix analysis. Since only the pre-selected users are required to feedback their channel state information, the proposed scheme realizes important savings in the CSIT feedback.
KSP Keywords
Angular spread, Channel State Information(CSI), Different angles, Downlink precoding, Downlink scheduling, Effective channel, Frequency Division Duplexing, MIMO scheme, Matrix Analysis, Number of users, Opportunistic beamforming
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.