14MS3100, The Core Technology Development of SW-SoC Convergence Platform for Hyper-Connection Services among Smart Devices based on Heterogeneous Multi-core C,
Lim Chae Deok
Abstract
Distributed networked control systems through wireless sensor and actuator networks have a tremendous potential to improve the efficiency of many large scale system. Designing a communication protocol that satisfies the stability and safety of networked control systems is a challenging task, because there is not yet a clear understanding of the interaction between communication and control layers in the overall system. In this paper, the main challenges to design a communication protocol for networked control systems are first clarified. Starting from these requirements, a power controlled fair access protocol is proposed where nodes send packets to their respective receivers within a broadcast range in the context of random access networks. The protocol design is based on a constrained optimization problem where the objective function is the information coverage of individual nodes subject to the state update interval constraint. The state update interval is the time elapsed between successful state vector reports derived from the networked control systems. A simple power control algorithm determines the transmit power of each node to satisfy their broadcast transmissions. A distributed channel access algorithm coordinates the channel access probability of individual nodes to achieve max?뱈in fairness of the state update interval of a random access network. The proposed protocol is applied for a conflict detection and resolution of an air transportation system. Furthermore, the protocol is compared with the default MAC and TSMA protocol (Chlamtac and Farago in IEEE/ACM Trans Netw 2(1):23??29, 1994) under various scenarios. Simulation results indicate that the protocol significantly improves the information coverage while reducing the state update interval. The proposed algorithm converges very fast while meeting the heterogeneous requirement of networked control systems. It also guarantees fairness among various nodes compared to the default MAC and TSMA protocol. By improving the communication performance, the proposed protocol improves the control efficiency and meets the safety criteria for air transportation systems.
KSP Keywords
Access protocol, Broadcast Range, Channel Access(CA), Communication control, Communication performance, Conflict Detection and Resolution(CD&R), Control efficiency, Distributed networked control systems, Interval constraint, Large-scale system, Overall system
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.