14MB1400, The core technology development of light and space adaptable energy-saving I/O (Input/Output) platform for future advertising service,
Hwang Chi-Sun
Abstract
Multilayered ZnO-SnO2 heterostructure thin films were produced using pulsed laser ablation of pie-shaped ZnO-SnO2 oxides target, and their structural and field effect electronic transport properties were investigated as a function of the thickness of the ZnO and SnO2 layers. The films have an amorphous multilayered heterostructure composed of the periodic stacking of the ZnO and SnO2 layers. The field effect electronic properties of amorphous multilayered ZnO-SnO2 heterostructure thin film transistors (TFTs) are highly dependent on the thickness of the ZnO and SnO2 layers. The highest electron mobility of 37 cm2/V s, a low subthreshold swing of a 0.19 V/decade, a threshold voltage of 0.13 V, and a high drain current on-to-off ratio of ~1010 obtained for the amorphous multilayered ZnO(1.5 nm)-SnO2(1.5 nm) heterostructure TFTs. These results are presumed to be due to the unique electronic structure of an amorphous multilayered ZnO-SnO2 heterostructure film consisting of ZnO, SnO2, and ZnO-SnO2 interface layers.
KSP Keywords
3 V, 5 nm, Drain current, Electronic properties, Electronic structures, Electronic transport properties, I-V characteristic(Transport property), Thin-Film Transistor(TFT), electron mobility, field effect, pulsed laser ablation(PLA)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.