14MB1200, Next Generation Optical and Electrical Module Technology for Smart Data Center,
Eun Soo Nam
Abstract
We report on a novel combination of measurement techniques for evaluating dimensional and compositional changes of selective-area-grown multiple-quantum-well laser diodes (SAG MQW LDs). This technique is based on C-V and I-V measurements of the fully fabricated LDs. Using this technique, the changes in the capacitance and voltage correspond to the layer thickness and bandgap energy. To verify the effectiveness of the proposed technique, we first fabricated an LD array containing ten different SAG MQW structures, and examined the effects of the dimensional and compositional changes on the wavelength shift both theoretically and experimentally. From our examination, we found that a wavelength shift of 83 nm is obtained for an SAG mask pattern with an opening width of 100 μm, and that a cross point between both dimensional and compositional changes exists for this mask pattern. As the following step, the fabricated LD array was tested using the proposed technique, and the growth rate enhancement and bandgap energy were extracted from the measured C-V and I-V results. The extracted data for each array channel were compared with the simulation results, which were well-fitted from the photo-luminescence (PL) measurements. They both show good agreement with the simulation results.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.