To overcome the resource and computing power limitation of mobile devices in Internet of Things (IoT) era, a cloud computing provides an effective platform without human intervention to build a resource-oriented security solution. However, existing malware detection methods are constrained by a vague situation of information leaks. The main goal of this paper is to measure a degree of hiding intention for the mobile application (app) to keep its leaking activity invisible to the user. For real-world application test, we target Android applications, which unleash user privacy data. With the TaintDroid-ported emulator, we make experiments about the timing distance between user events and privacy leaks. Our experiments with Android apps downloaded from the Google Play show that most of leak cases are driven by user explicit events or implicit user involvement which make the user aware of the leakage. Those findings can assist a malware detection system in reducing the rate of false positive by considering malicious intentions. From the experiment, we understand better about app's internal operations as well. As a case study, we also presents a cloud-based dynamic analysis framework to perform a traffic monitor.
KSP Keywords
Case studies, Cloud Computing, Cloud-based, Computing power, Data Leak, Detection Method, Dynamic analysis, False positive, Google play, Internet of thing(IoT), Intrusion detection system(IDS)
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.