?볾 leadless surface mount package was developed to enhance the switching and heat-dissipation properties of a power semiconductor. The package was implemented through a low-temperature co-fired ceramic (LTCC)-based multilayer circuit substrate that could form embedded cavities. A silicon carbide (SiC) Schottky barrier diode (SBD) bare die was attached to the cavity in the LTCC substrate. Chip interconnection was realized using a wide and thick copper (Cu) clip with a low parasitic inductance and electrical resistance compared to those of a conventional wire. Silver-filled multiple vias and wide metal planes were used to reduce the electrical parasitic effects and enhance the heat-dissipation of the package. The DC and dynamic characteristics of the 600 V/10 A-class SiC SBD package involving the proposed technologies were evaluated. The dynamic test results indicated that the reverse recovery charge (Qrr) was 18.7% lower than that of a traditional TO-220 packaged product with the same bare die. Furthermore, two leadless commercial products and the proposed package prototype were applied to a power factor correction (PFC) converter, and the power loss and heat-dissipation performances were compared. The proposed package exhibited a lower loss and higher heat dissipation than those of the commercial products.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.