Data augmentation is a well-known technique used for improving the generalization performance of modern neural networks. After the success of several traditional random data augmentation for images (including flipping, translation, or rotation), a recent surge of interest in implicit data augmentation techniques occurs to complement random data augmentation techniques. Implicit data augmentation augments training samples in feature space, rather than in pixel space, resulting in the generation of semantically meaningful data. Several techniques on implicit data augmentation have been introduced for classification tasks. However, few approaches have been introduced for regression tasks with continuous/structured labels, such as object pose estimation. Hence, we are motivated to propose a method for implicit semantic data augmentation for hand pose estimation. By considering semantic distances of hand poses, the proposed method implicitly generates extra training samples in feature space. We propose two additional techniques to improve the performance of this augmentation: metric learning and hand-dependent augmentation. Metric learning aims to learn feature representations to reflect the semantic distance of data. For hand pose estimation, the distribution of augmented hand poses can be regulated by managing the distribution of feature representations. Meanwhile, hand-dependent augmentation is specifically designed for hand pose estimation to prevent semantically meaningless hand poses from being generated (e.g., hands generated by simple interpolation between both hands). Further, we demonstrate the effectiveness of the proposed technique using two well-known hand pose datasets: STB and RHD.
KSP Keywords
Augmentation techniques, Both hands, Data Augmentation, Feature representation, Feature space, Generalization performance, Hand pose estimation, Metric learning, Neural networks, Object Pose Estimation, Pixel space
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.