This research paper provides a comprehensive overview of the challenges and potential solutions related to enabling haptic communication over the Tactile Internet in the context of 6G networks. The increasing demand for multimedia services and device proliferation has resulted in limited radio resources, posing challenges in their efficient allocation for Device-to-Device (D2D)-assisted haptic communications. Achieving ultra-low latency, security, and energy efficiency are crucial requirements for enabling haptic communication over TI. The paper explores various methodologies, technologies, and frameworks that can facilitate haptic communication, including backscatter communications (BsC), non-orthogonal multiple access (NOMA), and software-defined networks. Additionally, it discusses the potential of unmanned aerial vehicles (UAVs), network slicing, and wireless communication beyond 100 GHz and THz levels in improving haptic communication performance. The research emphasizes the importance of addressing security risks, optimizing resource allocation, and minimizing network congestion to unlock the potential of future networks and services. Aerial, ground, and underwater communication technologies are highlighted as key components of 6G networks, each with their advantages and challenges. The need for specialized equipment in remote areas to meet the bandwidth and latency requirements of haptic communication is underscored. The findings of this research contribute to a deeper understanding of haptic communication in the context of 6G networks and provide insights into potential solutions for overcoming the associated challenges.
KSP Keywords
Communication performance, Device to Device(D2D), Energy efficiency, Future Networks and Services, Haptic communication, Issues and challenges, Key Components, Multimedia Service, Nonorthogonal multiple access(NOMA), Potential solutions, Radio Resource
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.