We report two 275-GHz quadrature receivers (Rx’s) with mixer-first and LNA-first architectures in a 130-nm SiGe BiCMOS process. Both quadrature Rx’s contain I and Q mixers implemented with a modified Gilbert-cell mixer with swapped RF and local oscillation (LO) ports to downconvert the RF signal at 260–290 GHz to the I and Q intermediate frequency (IF) bands at 0.1–30GHz. For a cost-effective solution, a compact 260GHz quadrature LO chain is integrated with a compact frequency tripler with an E-band driving amplifier (DA), a 260-GHz DA, and a differential hybrid coupler to generate the quadrature LO signals for I and Q mixers. Comprised of a push-push doubler cascaded with a single-balanced mixer, the frequency tripler was employed to isolate the LO harmonic leakages from the IF band. A wideband IF amplifier was used for an aimed conversion gain higher than 20 dB in each channel. In the measurement, the implemented mixer-first and LNA-first Rx’s achieved a minimum single-sideband (SSB) noise figure (NF) of 22.3 and 21 dB, a peak gain of 21.4 and 27.5 dB with an IF bandwidth of 30 GHz. The amplitude and phase imbalances between the I and Q channels of the mixer-first Rx were measured around 1 dB and 4°. The fabricated mixer-firs and LNA-first chips occupy a whole area of 1.418 and 2.030 mm2, and consume a DC power of 434 and 490 mW, respectively.
KSP Keywords
130-nm SiGe BiCMOS, 30 GHz, 5 GHz, 60 GHz, Conversion gain, Dc power, Driving amplifier, Frequency tripler, Gilbert-cell, Hybrid coupler, IF amplifier
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.