Despite the growing interest in using deep reinforcement learning (DRL) for drone control, several challenges remain to be addressed, including issues with generalization across task variations and agent training (which requires significant computational power and time). When the agent's input changes owing to the drone's sensors or mission variations, significant retraining overhead is required to handle the changes in the input data pattern and the neural network architecture to accommodate the input data. These difficulties severely limit their applicability in dynamic real-world environments. In this paper, we propose an efficient DRL method that leverages the knowledge of the source agent to accelerate the training of the target agent under task variations. The proposed method consists of three phases: collecting training data for the target agent using the source agent, supervised pre-training of the target agent, and DRL-based fine-tuning. Experimental validation demonstrated a remarkable reduction in the training time (up to 94.29%), suggesting a potential avenue for the successful and efficient application of DRL in drone control.
KSP Keywords
Computational Power, Deep reinforcement learning, Fine-tuning, Knowledge transfer, Pre-Training, Real-world, Reinforcement learning(RL), Three phase, Training time, data patterns, experimental validation
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.