Blockchain technology has ushered in a transformative paradigm of decentralized and transparent systems, offering innovative solutions across diverse sectors. While these systems strive for unparalleled transparency and trustlessness in a fully distributed framework, permissionless blockchains, such as Bitcoin and Ethereum, encounter vulnerabilities due to their intrinsically public nature. Addressing these vulnerabilities, the emergence of permissioned blockchains presents a fortified alternative, incorporating rigorous access controls and authentication protocols to ensure participation exclusivity and transaction confidentiality. Nevertheless, a keen observation reveals that, despite encryption, the operational traffic within these blockchains manifests distinct time-series patterns and operational relations during sensitive data exchanges. Such patterns hold the potential to inadvertently expose critical details about the network, encompassing its topology and the operational dependencies among nodes. In light of this revelation, we introduce a pioneering blockchain fingerprinting mechanism, denoted as gShock. This system meticulously analyzes periodic patterns and the context of operational relations from the collected blockchain network traffic. It employs a Graph Neural Network (GNN)-based model, adept at capturing the intricate characteristics innate to specialized blockchain operations. Through empirical experiments conducted in a realistic permissioned blockchain environment, comprising various nodes, we ascertain that gShock demonstrates a remarkable proficiency in classifying blockchain operational traffic with an F-1 score of ≥ 96% and identifying individual dependencies with a macro F-1 score of ≥ 93%.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.